The collective motion of nematodes in a thin liquid layer†
نویسندگان
چکیده
Many organisms live in confined fluidic environments such as the thin liquid layers on the skin of host organisms or in partially-saturated soil. We investigate the collective behaviour of nematodes in a thin liquid layer, which was first described by Gray and Lissmann [J. Exp. Biol., 1964, 41, 135]. We show experimentally that nematodes confined by a thin liquid film come into contact spontaneously. By analysing the time scales of this aggregation, we suggest that the initial aggregation is driven by random collisions between nematodes but the continued collective motion is due to an attractive force between them arising from the surface tension of the layer. We show that for nearby nematodes this surface tension force is typically stronger than the force that may be exerted by the nematodes’ muscles. We believe this to be the first demonstration of the ‘‘Cheerios effect’’ acting on a living organism. However, we find that being grouped together does not significantly alter the body stroke and kinematic performance of the nematode: there are no statistically significant changes of the Strouhal number and the ratio of amplitude to wavelength when aggregated. This result implies that nematodes gain neither a mechanical advantage nor disadvantage by being grouped together; the capillary force merely keeps them stuck together after a chance encounter.
منابع مشابه
Wettability of Liquid Mixtures on Porous Silica and Black Soot Layers
Sophisticated manipulation of surface roughness and solid surface energy are widely used to design super-hydrophobic layers. In this work, we designed highly porous silica layer with contact angle (CA) of 145°, and its robustness was promoted with thermal treatment. Wettability of coated layer is studied with CA measurement for different liquid surface tensions using diluted organi...
متن کاملModeling and Simulation of CO2 Absorption Enhancement in Hollow-Fiber Membrane Contactors using CNT–Water-Based Nanofluids
Absorption of CO2 from a gas mixture containing CO2 and nitrogen by water-based CNT nanofluids in gas–liquid hollow fiber membrane contactor was modeled and solved using COMSOL Multiphysics 5.4. The model assumed partial wetting of the membrane, along with diffusion in the axial and radial directions. In addition, Brownian motion and grazing effects were both considered in the model. The main c...
متن کاملFinding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model
In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which is integer and constant and k is wave vector). The longitudinal ...
متن کاملFilms, layers, and droplets: The effect of near-wall fluid structure on spreading dynamics.
We present a study of the spreading of liquid droplets on a solid substrate at very small scales. We focus on the regime where effective wetting energy (binding potential) and surface tension effects significantly influence steady and spreading droplets. In particular, we focus on strong packing and layering effects in the liquid near the substrate due to underlying density oscillations in the ...
متن کاملBuckling Study of Thin Tank Filled with Heterogeneous Liquid
Buckling of imperfect thin shell tank which is subjected to uniform axial compression is analyzed. The effect of internal pressure on the stability of a shell tank filled with a homogeneous-heterogeneous liquid was considered. Investigation of the liquid nature effect on reduction of the shell buckling load is performed by using the finite elements method. Calculating results in terms of analyt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011